If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+18m-19=0
a = 1; b = 18; c = -19;
Δ = b2-4ac
Δ = 182-4·1·(-19)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-20}{2*1}=\frac{-38}{2} =-19 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+20}{2*1}=\frac{2}{2} =1 $
| 6/7c=31 | | 200(0.5)^x=3.25 | | 7x(4+0.6)-7x=3(0.6x-7) | | 12+5c=1c+4 | | 21=v/2-17 | | 9g+2=4 | | 12q−20=13q | | 11+0.5(2x-7)=0.3(8x-1)+0.5 | | 19x-28=2(6x+7) | | a(a+2)=24 | | 1+7x=-55 | | 74=n-2.6 | | 25x=1234567890 | | Y=-0.03x+18.43 | | (-83x=x | | X÷7-2x=18 | | 92=4f | | -3k+1=18+14k | | 4×2+3x=0 | | (b)3=36 | | 6u-17+19=-3u+20 | | 60/2n=30*5 | | 72+a=85 | | 30=15/18x | | 7(x+4)=12(x+1 | | 1/2s=4.12+10.5 | | (3x+16/2)=5 | | -10.08-8.4b=-6.8b | | 6u+u=14 | | 3/3x-3/4=0 | | 8x-17+5x+7=180 | | -2+w=8-w |